Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 562
Filtrar
1.
Cancer Discov ; 14(1): 142-157, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-37934007

RESUMO

Suboptimal functional persistence limits the efficacy of adoptive T-cell therapies. CD28-based chimeric antigen receptors (CAR) impart potent effector function to T cells but with a limited lifespan. We show here that the genetic disruption of SUV39H1, which encodes a histone-3, lysine-9 methyl-transferase, enhances the early expansion, long-term persistence, and overall antitumor efficacy of human CAR T cells in leukemia and prostate cancer models. Persisting SUV39H1-edited CAR T cells demonstrate improved expansion and tumor rejection upon multiple rechallenges. Transcriptional and genome accessibility profiling of repeatedly challenged CAR T cells shows improved expression and accessibility of memory transcription factors in SUV39H1-edited CAR T cells. SUV39H1 editing also reduces expression of inhibitory receptors and limits exhaustion in CAR T cells that have undergone multiple rechallenges. Our findings thus demonstrate the potential of epigenetic programming of CAR T cells to balance their function and persistence for improved adoptive cell therapies. SIGNIFICANCE: T cells engineered with CD28-based CARs possess robust effector function and antigen sensitivity but are hampered by limited persistence, which may result in tumor relapse. We report an epigenetic strategy involving disruption of the SUV39H1-mediated histone-silencing program that promotes the functional persistence of CD28-based CAR T cells. See related article by López-Cobo et al., p. 120. This article is featured in Selected Articles from This Issue, p. 5.


Assuntos
Leucemia , Receptores de Antígenos Quiméricos , Masculino , Humanos , Linfócitos T , Receptores de Antígenos de Linfócitos T , Histonas/metabolismo , Antígenos CD28/genética , Antígenos CD28/metabolismo , Imunoterapia Adotiva , Leucemia/metabolismo , Metilação , Ensaios Antitumorais Modelo de Xenoenxerto , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
2.
Breast Cancer Res Treat ; 203(1): 57-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37733186

RESUMO

PURPOSE: Chemotherapeutic agents exert immunomodulatory effects on triple-negative breast cancer (TNBC) cells and immune cells. Eribulin favorably affects the immunological status of patients with breast cancer. However, the effects of eribulin on the immune cells remain unexplored. The aim of this study was to investigate the effects of eribulin on immune cells. METHODS: Peripheral blood mononuclear cells (PBMCs) from healthy donors and mouse splenocytes were stimulated with anti-CD3 and anti-CD28 antibodies. The effects of eribulin and paclitaxel on cell proliferation and differentiation status were analyzed using flow cytometry. RNA sequencing was performed to assess alterations in gene expression in CD8+ T cells following eribulin and paclitaxel treatment. Using TNBC cell lines (MDA-MB-231, Hs578T, and MDA-MB-157), the anti-tumor activity of CD3/CD28-stimulated T cells combined with eribulin or paclitaxel was evaluated. RESULTS: Eribulin did not affect CD3/CD28-stimulated PBMCs proliferation. However, eribulin significantly decreased the CD4/CD8 ratio in T cells, indicating that eribulin facilitates CD8+ T cell proliferation. Furthermore, eribulin significantly increased the frequency of less differentiated CD45RA+, CCR7+, and TCF1+ subsets of CD8+ T cells. RNA sequencing revealed that eribulin enhanced the expression of gene sets related to cell proliferation and immune responses. Moreover, eribulin augmented the anti-tumor effects of CD3/CD28-stimulated T cells against TNBC cells. These results were not observed in experiments using paclitaxel. CONCLUSIONS: Eribulin promoted CD8+ T cell proliferation, repressed effector T cell differentiation, and harnessed T cell-mediated anti-tumor effects. These mechanisms may be one of the cues that eribulin can improve the immunological status of tumor-bearing hosts.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Antígenos CD28/genética , Antígenos CD28/metabolismo , Leucócitos Mononucleares/metabolismo , Paclitaxel/farmacologia , Proliferação de Células
3.
Cancer Res Commun ; 3(12): 2430-2446, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37971169

RESUMO

Understanding the intricate dynamics between adoptively transferred immune cells and the brain tumor immune microenvironment (TIME) is crucial for the development of effective T cell-based immunotherapies. In this study, we investigated the influence of the TIME and chimeric antigen receptor (CAR) design on the anti-glioma activity of B7-H3-specific CAR T-cells. Using an immunocompetent glioma model, we evaluated a panel of seven fully murine B7-H3 CARs with variations in transmembrane, costimulatory, and activation domains. We then investigated changes in the TIME following CAR T-cell therapy using high-dimensional flow cytometry and single-cell RNA sequencing. Our results show that five out of six B7-H3 CARs with single costimulatory domains demonstrated robust functionality in vitro. However, these CARs had significantly varied levels of antitumor activity in vivo. To enhance therapeutic effectiveness and persistence, we incorporated 41BB and CD28 costimulation through transgenic expression of 41BBL on CD28-based CAR T-cells. This CAR design was associated with significantly improved anti-glioma efficacy in vitro but did not result in similar improvements in vivo. Analysis of the TIME revealed that CAR T-cell therapy influenced the composition of the TIME, with the recruitment and activation of distinct macrophage and endogenous T-cell subsets crucial for successful antitumor responses. Indeed, complete brain macrophage depletion using a CSF1R inhibitor abrogated CAR T-cell antitumor activity. In sum, our study highlights the critical role of CAR design and its modulation of the TIME in mediating the efficacy of adoptive immunotherapy for high-grade glioma. SIGNIFICANCE: CAR T-cell immunotherapies hold great potential for treating brain cancers; however, they are hindered by a challenging immune environment that dampens their effectiveness. In this study, we show that the CAR design influences the makeup of the immune environment in brain tumors, underscoring the need to target specific immune components to improve CAR T-cell performance, and highlighting the significance of using models with functional immune systems to optimize this therapy.


Assuntos
Neoplasias Encefálicas , Glioma , Receptores de Antígenos Quiméricos , Camundongos , Animais , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Macrófagos Associados a Tumor/metabolismo , Antígenos CD28/genética , Glioma/terapia , Neoplasias Encefálicas/terapia , Encéfalo/metabolismo , Microambiente Tumoral
4.
Immunity ; 56(10): 2180-2182, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37820579

RESUMO

Immune checkpoint receptor-induced T cell dysfunction is a major cause of CAR T cell treatment failure. In this issue, Agarwal et al. report that CRISPR/Cas9 deletion of CTLA4, but not PDCD1 or CTLA4 and PDCD1, enhances CD28 signaling, restoring fitness and antitumor function of CAR T cells, including those derived from patients who failed CAR T cell therapy.


Assuntos
Antígenos CD28 , Imunoterapia Adotiva , Humanos , Antígeno CTLA-4/genética , Antígenos CD28/genética , Transdução de Sinais , Linfócitos T
5.
J Exp Clin Cancer Res ; 42(1): 287, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898752

RESUMO

BACKGROUND: Immune checkpoint blockade (ICB) has significantly prolonged survival of non-small cell lung cancer (NSCLC) patients, although most patients develop mechanisms of resistance. Recently single-cell RNA-sequencing (scRNA-Seq) revealed a huge T-cell phenotypic and (dys)functional state variability. Accordingly, T-cell exhaustion is recognized as a functional adaptation, with a dynamic progression from a long-lived "pre-exhausted stem-like progenitor" to a "terminally exhausted" state. In this scenario it is crucial to understand the complex interplay between co-stimulatory and inhibitory molecules in CD8+ T-cell functionality. METHODS: To gain a baseline landscape of the composition, functional states, and transcriptomic signatures predictive of prognosis, we analyzed CD8+ T-cell subsets characterized by the presence/absence of PD1 and CD28 from periphery, adjacent non-tumor tissue and tumor site of a cohort of treatment-naïve NSCLC patients, by integrated multiparametric flow cytometry, targeted multi-omic scRNA-seq analyses, and computational pipelines. RESULTS: Despite the increased PD1 levels, an improved PD1+CD28+ T-cell polyfunctionality was observed with the transition from periphery to tumor site, associated with lack of TIGIT, TIM-3 and LAG-3, but not with Ag-experienced-marker CD11a. Differently from CD28+ T cells, the increased PD1 levels in the tumor were associated with reduced functionality in PD1+CD28- T cells. CD11ahigh, although expressed only in a small fraction of this subset, still sustained its functionality. Absence of TIGIT, TIM-3 and CTLA-4, alone or combined, was beneficial to CD28- T cells. Notably, we observed distinct TRM phenotypes in the different districts, with CD28+ T cells more capable of producing TGFß in the periphery, potentially contributing to elevated CD103 levels. In contrast CD28- TRM mainly produced CXCL13 within the tumor. ScRNA-seq revealed 5 different clusters for each of the two subsets, with distinctive transcriptional profiles in the three districts. By interrogating the TCGA dataset of patients with lung adenocarcinoma (LUAD) and metastatic NSCLC treated with atezolizumab, we found signatures of heterogeneous TRM and "pre-exhausted" long-lived effector memory CD8+ T cells associated with improved response to ICB only in the presence of CD28. CONCLUSIONS: Our findings identify signatures able to stratify survival of LUAD patients and predict ICB response in advanced NSCLC. CD28 is advocated as a key determinant in the signatures identified, in both periphery and tumor site, thus likely providing feasible biomarkers of ICB response.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Linfócitos T CD8-Positivos , Antígenos CD28/genética , Antígenos CD28/uso terapêutico , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor Celular 2 do Vírus da Hepatite A/genética , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/patologia
6.
Front Immunol ; 14: 1123832, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457686

RESUMO

Introduction: The human leukocyte antigen (HLA) has been linked to the majority of autoimmune diseases (ADs). However, non-HLA genes may be risk factors for ADs. A number of genes encoding proteins involved in regulating T-cell and B-cell function have been identified as rheumatoid arthritis (RA) susceptibility genes. Methods: In this study, we investigated the association between RA and single-nucleotide polymorphisms (SNPs) of co-stimulatory or co-inhibitory molecules in 124 RA cases and 100 healthy controls without immune-related diseases [including tumor necrosis factor superfamily member 4 (TNFSF4), CD28, cytotoxic T-lymphocyte-associated protein 4 (CTLA4), and programmed cell death protein 1 (PDCD1)]. Results: The results showed that there were 13 SNPs associated with RA, including rs181758110 of TNFSF4 (CC vs. CT, p = 0.038); rs3181096 of CD28 (TT vs. CC + CT, p = 0.035; CC vs. TT, p = 0.047); rs11571315 (TT vs. CT, p = 0.045), rs733618 (CC vs. TT + CT, p = 0.043), rs4553808 (AA vs. AG vs. GG, p = 0.035), rs11571316 (GG vs. AG vs. AA, p = 0.048; GG vs. AG + AA, p = 0.026; GG vs. AG, p = 0.014), rs16840252 (CC vs. CT vs. TT, p = 0.007; CC vs. CT, p = 0.011), rs5742909 (CC vs. CT vs. TT, p = 0.040), and rs11571319 of CTLA4 (GG vs. AG vs. AA, p < 0.001; GG vs. AG + AA, p = 0.048; AA vs. GG + AG, p = 0.001; GG vs. AA, p = 0.008; GG vs. AG, p ≤ 0.001); and rs10204525 (TT vs. CT + CC, p = 0.024; TT vs. CT, p = 0.021), rs2227982 (AA vs. GG, p = 0.047), rs36084323 (TT vs. CT vs. CC, p = 0.022; TT vs. CT + CC, p = 0.013; CC vs. TT + CT, p = 0.048; TT vs. CC, p = 0.008), and rs5839828 of PDCD1 (DEL vs. DEL/G vs. GG, p = 0.014; DEL vs. DEL/G + GG, p = 0.014; GG vs. DEL + DEL/G, p = 0.025; DEL vs. GG, p = 0.007). Discussion: Consequently, these SNPs may play an important role in immune regulation, and further research into the role of these SNPs of immune regulatory genes in the pathogenesis of RA is required.


Assuntos
Artrite Reumatoide , Polimorfismo de Nucleotídeo Único , Humanos , Predisposição Genética para Doença , Antígeno CTLA-4/genética , Antígenos CD28/genética , Artrite Reumatoide/genética , Fator de Necrose Tumoral alfa/genética , Ligante OX40/genética
7.
Nat Cancer ; 4(7): 1001-1015, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37336986

RESUMO

The limited efficacy of chimeric antigen receptor (CAR) T cell therapy for solid tumors necessitates engineering strategies that promote functional persistence in an immunosuppressive environment. Herein, we use c-Kit signaling, a physiological pathway associated with stemness in hematopoietic progenitor cells (T cells lose expression of c-Kit during differentiation). CAR T cells with intracellular expression, but no cell-surface receptor expression, of the c-Kit D816V mutation (KITv) have upregulated STAT phosphorylation, antigen activation-dependent proliferation and CD28- and interleukin-2-independent and interferon-γ-mediated co-stimulation, augmenting the cytotoxicity of first-generation CAR T cells. This translates to enhanced survival, including in transforming growth factor-ß-rich and low-antigen-expressing solid tumor models. KITv CAR T cells have equivalent or better in vivo efficacy than second-generation CAR T cells and are susceptible to tyrosine kinase inhibitors (safety switch). When combined with CD28 co-stimulation, KITv co-stimulation functions as a third signal, enhancing efficacy and providing a potent approach to treat solid tumors.


Assuntos
Interleucina-2 , Proteínas Proto-Oncogênicas c-kit , Linfócitos T , Antígenos CD28/genética , Antígenos CD28/metabolismo , Linhagem Celular Tumoral , Imunoterapia Adotiva , Interleucina-2/farmacologia , Interleucina-2/metabolismo , Receptores Proteína Tirosina Quinases , Proteínas Proto-Oncogênicas c-kit/metabolismo
8.
Mol Ther ; 31(7): 2120-2131, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37081789

RESUMO

IL-17-producing antigen-specific human T cells elicit potent antitumor activity in mice. Yet, refinement of this approach is needed to position it for clinical use. While activation signal strength regulates IL-17 production by CD4+ T cells, the degree to which T cell antigen receptor (TCR) and costimulation signal strength influences Th17 immunity remains unknown. We discovered that decreasing TCR/costimulation signal strength by incremental reduction of αCD3/costimulation beads progressively altered Th17 phenotype. Moreover, Th17 cells stimulated with αCD3/inducible costimulator (ICOS) beads produced more IL-17A, IFNγ, IL-2, and IL-22 than those stimulated with αCD3/CD28 beads. Compared with Th17 cells stimulated with the standard, strong signal strength (three beads per T cell), Th17 cells propagated with 30-fold fewer αCD3/ICOS beads were less reliant on glucose and favored the central carbon pathway for bioenergetics, marked by abundant intracellular phosphoenolpyruvate (PEP). Importantly, Th17 cells stimulated with weak αCD3/ICOS beads and redirected with a chimeric antigen receptor that recognizes mesothelin were more effective at clearing human mesothelioma. Less effective CAR Th17 cells generated with high αCD3/ICOS beads were rescued by overexpressing phosphoenolpyruvate carboxykinase 1 (PCK1), a PEP regulator. Thus, Th17 therapy can be improved by using fewer activation beads during manufacturing, a finding that is cost effective and directly translatable to patients.


Assuntos
Proteína Coestimuladora de Linfócitos T Induzíveis , Interleucina-17 , Receptores de Antígenos Quiméricos , Animais , Humanos , Camundongos , Antígenos CD28/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Interleucina-17/metabolismo , Ativação Linfocitária , Fosfoenolpiruvato/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Transdução de Sinais , Células Th17/metabolismo
9.
Cancer Res Commun ; 3(1): 66-79, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36968221

RESUMO

Chimeric antigen receptor (CAR) T cell immunotherapy is emerging as a powerful strategy for cancer therapy; however, an important safety consideration is the potential for off-tumor recognition of normal tissue. This is particularly important as ligand-based CARs are optimized for clinical translation. Our group has developed and clinically translated an IL13(E12Y) ligand-based CAR targeting the cancer antigen IL13Rα2 for treatment of glioblastoma (GBM). There remains limited understanding of how IL13-ligand CAR design impacts the activity and selectivity for the intended tumor-associated target IL13Rα2 versus the more ubiquitous unintended target IL13Rα1. In this study, we functionally compared IL13(E12Y)-CARs incorporating different intracellular signaling domains, including first-generation CD3ζ-containing CARs (IL13ζ), second-generation 4-1BB (CD137)-containing or CD28-containing CARs (IL13-BBζ or IL13-28ζ), and third-generation CARs containing both 4-1BB and CD28 (IL13-28BBζ). In vitro coculture assays at high tumor burden establish that second-generation IL13-BBζ or IL13-28ζ outperform first-generation IL13ζ and third-generation IL13-28BBζ CAR designs, with IL13-BBζ providing superior CAR proliferation and in vivo antitumor potency in human xenograft mouse models. IL13-28ζ displayed a lower threshold for antigen recognition, resulting in higher off-target IL13Rα1 reactivity both in vitro and in vivo. Syngeneic mouse models of GBM also demonstrate safety and antitumor potency of murine IL13-BBζ CAR T cells delivered systemically after lymphodepletion. These findings support the use of IL13-BBζ CARs for greater selective recognition of IL13Rα2 over IL13Rα1, higher proliferative potential, and superior antitumor responsiveness. This study exemplifies the potential of modulating factors outside the antigen targeting domain of a CAR to improve selective tumor recognition. Significance: This study reveals how modulating CAR design outside the antigen targeting domain improves selective tumor recognition. Specifically, this work shows improved specificity, persistence, and efficacy of 4-1BB-based IL13-ligand CARs. Human clinical trials evaluating IL13-41BB-CAR T cells are ongoing, supporting the clinical significance of these findings.


Assuntos
Glioblastoma , Subunidade alfa2 de Receptor de Interleucina-13 , Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos/genética , Linfócitos T , Imunoterapia Adotiva/métodos , Subunidade alfa2 de Receptor de Interleucina-13/genética , Interleucina-13/genética , Antígenos CD28/genética , Ligantes , Glioblastoma/terapia , Modelos Animais de Doenças
10.
Int Immunopharmacol ; 117: 109827, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36989973

RESUMO

BACKGROUND: Therapeutic options for small cell lung cancer (SCLC), a particularly lethal malignancy, remain limited. Members of the B7-CD28 family are compelling targets for immune checkpoint blockade strategies, which involve activating, inhibiting, and fine-tuning the T cell immune response. However, their clinical features and significance have not been explored comprehensively. METHOD: We enrolled 228 patients with an initial diagnosis of SCLC, including 77 cases from Cbioportal and a validation cohort of 151 cases with qPCR data. Kaplan-Meier analysis and LASSO Cox model were used to identify a signature based on the B7-CD28 family, which was applied for accurate prediction of chemotherapy benefit and prognosis for SCLC patients. In addition, we applied bioinformatics analysis to explore potential signature-related molecular mechanisms and the immune landscape. RESULTS: The mutation profiles of healthy tissues and SCLC tissues were distinct. A signature consisting of seven genes (CD86, ICOSLG, CD276, CD28, CTLA-4, PDCD1, and TMIGD2) was identified and applied to group patients based on risk level (high-risk and low-risk), producing two groups for which survival outcomes differed significantly (HR = 3.81, 95% CI: 2.16-6.74, P < 0.001). The immune checkpoint-based signature accurately predicted patient outcomes for the selected training and validation sets. Notably, low-risk patients were more likely to benefit from chemotherapy and showed greater immune activation. Additionally, time-dependent ROC curves and C-index analysis confirmed that the immune checkpoint-based signature has excellent predictive power for prognosis and chemotherapy benefit compared to clinically recognized parameters. Finally, multivariate analysis confirmed the identified signature as an independent risk factor for prognosis and chemotherapeutic response. CONCLUSION: We systematically obtained a comprehensive molecular profile for B7-CD28 family members in SCLC patients, from which we produced a reliable and robust prognostic immune checkpoint-based signature with the potential to improve prognostic stratification and therapy strategies for SCLC patients.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Antígenos CD28/genética , Prognóstico , Fatores de Transcrição , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Antígenos B7
11.
Hepatol Commun ; 7(2): e0022, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36691969

RESUMO

BACKGROUND AND AIMS: Efficacy of chimeric antigen receptor (CAR) T cells for treating solid tumors, including HCC, remains a challenge. Nanobodies are emerging building blocks of CAR T cells due to their small size and high expression. Membrane proximal sites have been shown as attractive epitopes of CAR T cells. However, current CAR formats are not tailored toward nanobodies or targeting membrane distal epitopes. APPROACH AND RESULTS: Using hYP7 Fv (membrane proximal) and HN3 VH nanobody (membrane distal) as GPC3 targeting elements, we sought to determine how hinges and transmembrane portions of varying structures and sizes affect CAR T-cell function. We generated multiple permutations of CAR T cells containing CD8, CD28, IgG4, and Fc domains. We show that engineered HN3 CAR T cells can be improved by 2 independent, synergistic changes in the hinge and transmembrane domains. The T cells expressing the HN3 CAR which contains the hinge region of IgG4 and the CD28 transmembrane domain (HN3-IgG4H-CD28TM) exhibited high cytotoxic activity and caused complete HCC tumor eradication in immunodeficient mice. HN3-IgG4H-CD28TM CAR T cells were enriched for cytotoxic-memory CD8+ T cells and NFAT signals, and reduced ß catenin levels in HCC cells. CONCLUSION: Our findings indicate that altering the hinge and transmembrane domains of a nanobody-based CAR targeting a distal GPC3 epitope, in contrast to a membrane proximal epitope, lead to robust T-cell signaling and induce swift and durable eradication of HCC tumors.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores de Antígenos Quiméricos , Anticorpos de Domínio Único , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Receptores de Antígenos Quiméricos/metabolismo , Neoplasias Hepáticas/patologia , Anticorpos de Domínio Único/metabolismo , Glipicanas/metabolismo , Antígenos CD28/genética , Antígenos CD28/metabolismo , Linfócitos T/metabolismo , Linfócitos T/patologia , Epitopos/metabolismo , Imunoglobulina G/metabolismo
12.
J Immunol Methods ; 513: 113425, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36638881

RESUMO

CD80 or cluster of differentiation 80, also known as B7-1, is a member of the immunoglobulin super family, which binds to CTLA-4 and CD28 T cell receptors and induces inhibitory and inductive signals respectively. Although CTLA-4 and CD28 receptors belong to the same protein family, slight differences in their structures leads to CD80 having a higher binding affinity to CTLA-4 (-14.55 kcal/mol) compared with CD28(-12.51 kcal/mol). In this study, we constructed a variant of CD80 protein with increased binding affinity to CTLA-4 and decreased binding affinity to CD28. This variant has no signaling capability, and can act as a cap for these receptors to protect them from natural CD80 proteins existing in the body. The first step was the evolutionary and alanine scanning analysis of CD80 protein to determine conserved regions in this protein. Next, complex alanine scanning technique was employed to determine CD80 protein hotspots in CD80-CTLA-4 and CD80-CD28 protein complexes. This information was fed into a computational model developed in R for in silico mutagenesis and CD80 variant library construction. The 3D structures of variants were modeled using the Swiss model webserver. After modeling the 3D structures, HADDOCK server was employed to build all protein-protein complexes, which contain CTLA-4-CD80 variant complexes, Wild type CD80-CD28 complexes and CD28-CD80 variant complexes. Protein-protein binding free energy was determined using FoldX and the variant number 316 with mutations at 29, 31, 33 positions showed increased binding affinity to CTLA-4 (-21.43 kcal/mol) and decreased binding affinity to CD28 (- 9.54 kcal/mol). Finally, molecular dynamics (MD) simulations confirmed the stability of variant 316. In conclusion, we designed a new CD80 protein variant with potential immunotherapeutic applications.


Assuntos
Imunoconjugados , Neoplasias , Humanos , Antígenos CD28/genética , Antígeno CTLA-4/genética , Antígeno CTLA-4/metabolismo , Antígenos CD/genética , Antígenos de Diferenciação/química , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Abatacepte/metabolismo , Imunoconjugados/metabolismo , Neoplasias/genética , Neoplasias/terapia , Antígeno B7-1/genética , Antígeno B7-1/química , Antígeno B7-1/metabolismo , Imunoterapia , Proteínas de Transporte , Antígeno B7-2/genética , Ativação Linfocitária
13.
Int Immunopharmacol ; 114: 109593, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36700773

RESUMO

Chimeric antigen receptor (CAR) T cell therapy is introduced as an effective, rapidly evolving therapeutic to treat cancer, especially cancers derived from hematological cells, such as B cells. CAR T cell gene constructs combine a tumor-targeting device coupled to the T cell receptor (TCR) zeta chain domain with different signaling domains such as domains derived from CD28 or 4-1BB (CD137). The incorporation of each specific co-stimulatory domain targets the immunometabolic pathways of CAR T cells as well as other signaling pathways. Defining the immunometabolic and signaling pathways by which CAR T cells become and remain active, survive, and eliminate their targets may represent a huge step forward in this relatively young research field as the CAR gene can be tailored to gain optimal function also for solid tumors with elaborate immunosuppression and protective stroma. There is a close relationship between different signaling domains applied in CAR T cells, and difficult to evaluate the benefit from different tested CAR gene constructs. In this review, we attempt to collect the latest findings regarding the CAR T cell signaling pathways that affect immunometabolic pathways.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Linfócitos T , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Imunoterapia Adotiva , Transdução de Sinais , Neoplasias/tratamento farmacológico , Antígenos CD28/genética , Antígenos CD28/metabolismo
14.
Mol Carcinog ; 62(2): 200-209, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36300887

RESUMO

Liquid biopsy has been experimented with to identify the mutation of lymphoma based on next-generation sequencing (NGS). We applied NGS analysis to circulating tumor DNA (ctDNA) in 20 lymphoma patients. Then, we compared treatment outcomes, and clinical characteristics among these patients, then investigated mutational profiling. Two independent cohorts of 241 patients with mature B cell lymphoma in Mature B-cell malignancies data set (MBN) data set and 50 diffuse large B-cell lymphoma (DLBCL) patients in DLBCL data set, were used to examine the association between gene mutations and prognosis. We found ctDNA positive group had significantly more relapsed/PD (7/12, 58.3%) and less CR/PR patients (1/12, 8.3%) compared to negative group (0, 0%) (5/8, 62.5%) (p < 0.001). Somatic alterations were identified in 12 of 20 patients and the total 11 mutations were: Ataxia telangiectasia mutated (ATM), TP53, BCL2, BTG2, CD28, EP300, IDH2, IRF8, JAK3, NOTCH1, and NRAS. ATM (S2168L) was found in SLL and TLBL for the first time. BTG2 (c.292_293del), CD28 (P119T), IRF8 (E74D) and NOTCH1 (c.4348 G > A) were newly detected in DLBCL, angioimmunoblastic T-cell lymphoma, primary central nervous system lymphoma, and BCL for the first time respectively. We also disclosed an unreported mutation EP300 (c.1058_1059insC) in DLBCL. Our cases implied ctDNA detection consistent with the FISH of tissue samples to some extent, speculating new molecular subtypes of DLBCL, finding some potential drug-resistant mutations, and suggesting disease recurrence. Moreover, in MBN and DLBCL datasets, patients with TP53 mutation had a significantly shorter OS (all p < 0.05) in both circulating free DNA and tumor tissue. The mutations (no SNP) of NOTCH1 (all p < 0.05) significantly contributed to worse OS in the two cohorts.


Assuntos
DNA Tumoral Circulante , Proteínas Imediatamente Precoces , Linfoma Difuso de Grandes Células B , Humanos , DNA Tumoral Circulante/genética , Sequenciamento de Nucleotídeos em Larga Escala , Antígenos CD28/genética , Recidiva Local de Neoplasia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Mutação , Fatores Reguladores de Interferon/genética , Proteínas Imediatamente Precoces/genética , Proteínas Supressoras de Tumor/genética
15.
Cytotherapy ; 25(2): 148-161, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36396553

RESUMO

BACKGROUND AIMS: Cholangiocarcinoma (CCA) is a lethal bile-duct cancer that is difficult to treat by current standard procedures. This drawback has prompted us to develop adoptive T-cell therapy for CCA, which requires an appropriate target antigen for binding of chimeric antigen receptor (CAR) T cells. Mucin 1 (MUC1), an overexpressed protein in CCA cells, is a potential target antigen for the CAR T-cell development. However, MUC1 overexpression also is associated with the upregulation of programmed death-ligand 1 (PD-L1), an immune checkpoint protein that prohibits anti-tumor functions of T cells, probably causing poor overall survival of patients with CCA. METHODS: To overcome this problem, we developed anti-MUC1-CAR T cells containing PD-1-CD28 switch receptor (SR), namely αM.CAR/SR T cells, to target MUC1 and switch on the inhibitory signal of PD-1/PD-L1 interaction to activate CD28 signaling. Our lentiviral construct contains the sequences that encode anti-MUC1-single chain variable fragment, CD137 and CD3ζ, linked with P2A, PD-1 and CD28. RESULTS: Initially, the upregulations of MUC1 and PD-L1 proteins were confirmed in CCA cell lines. αM.CAR and SR were co-expressed in 53.53 ± 13.89% of transduced T cells, mainly CD8+ T cells (85.7 ± 0.75%, P<0.0001) with the effector memory phenotype (59.22 ± 16.31%, P < 0.01). αM.CAR/SR T cells produced high levels of intracellular tumor necrosis factor-α and interferon-γ in response to the activation by CCA cells expressing MUC1, including KKU-055 (27.18 ± 4.38% and 27.33 ± 5.55%, respectively, P < 0.05) and KKU-213A (47.37 ± 12.67% and 54.55 ± 8.66%, respectively, P < 0.01). Remarkably, the cytotoxic function of αM.CAR/SR T cells against KKU-213A cells expressing PD-L1 was significantly enhanced compared with the αM.CAR T cells (70.69 ± 14.38% versus 47.15 ± 8.413%, respectively; P = 0.0301), correlated with increased granzyme B production (60.6 ± 9.89% versus 43.2 ± 8.95%, respectively; P = 0.0402). Moreover, the significantly enhanced disruption of KKU-213A spheroids by αM.CAR/SR T cells (P = 0.0027), compared with αM.CAR T cells, was also observed. CONCLUSION: Taken together, the cytotoxic function of αM.CAR/SR T cells was enhanced over the αM.CAR T cells, which are potential to be further tested for CCA treatment.


Assuntos
Colangiocarcinoma , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1/genética , Antígenos CD28/genética , Linhagem Celular Tumoral , Colangiocarcinoma/terapia , Imunoterapia Adotiva/métodos
16.
Gene Ther ; 30(5): 411-420, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953316

RESUMO

Chimeric antigen receptor T (CAR-T) cell therapy has demonstrated remarkable efficacies in treating hematopoietic malignancies, but not in the solid tumors. Incorporating costimulatory signaling domains, such as ICOS or 4-1BB, can positively influence CAR-T cell functions and then the immune responses. These CAR-engineered T cells have showed their enhanced persistence and effector functions with improved antitumor activities, and provided a new approach for the treatment of solid tumors. Here, we designed novel 2nd generation CARs with a costimulatory signaling molecule, dectin-1. The impacts of dectin-1 signaling domain on CAR-T cells were evaluated in vitro and in vivo. Our data show that in vitro cytokine secretions by HER2 or CD19 specific CAR-T cells increase significantly via incorporating this dectin-1 signaling domain. Additional properties of these novel CAR-T cells are affected by this costimulatory domain. Compared with a popular reference (i.e., anti-HER2 CAR-T cells with 4-1BB), in vitro T cell functions and in vivo antitumor activity of the dectin-1 engineered CAR-T cells are similar to the 4-1BB based, and both are discrete to the mock T cells. Furthermore, we found that the CAR-T cells with dectin-1 show distinct phenotype and exhaustion marker expression. These collective results suggest that the incorporation of this new signaling domain, dectin-1, into the CARs may provide the clinical potential of the CAR-T cells through this signaling domain in treating solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Antígenos CD28/genética , Antígenos CD28/metabolismo , Receptores de Antígenos de Linfócitos T , Linfócitos T , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Mol Ther ; 31(1): 35-47, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36045585

RESUMO

CD19-targeting chimeric antigen receptors (CARs) with CD28 and CD3ζ signaling domains have been approved by the US FDA for treating B cell malignancies. Mutation of immunoreceptor tyrosine-based activation motifs (ITAMs) in CD3ζ generated a single-ITAM containing 1XX CAR, which displayed superior antitumor activity in a leukemia mouse model. Here, we investigated whether the 1XX design could enhance therapeutic potency against solid tumors. We constructed both CD19- and AXL-specific 1XX CARs and compared their in vitro and in vivo functions with their wild-type (WT) counterparts. 1XX CARs showed better antitumor efficacy in both pancreatic and melanoma mouse models. Detailed analysis revealed that 1XX CAR-T cells persisted longer in vivo and had a higher percentage of central memory cells. With fluorescence resonance energy transfer (FRET)-based biosensors, we found that decreased ITAM numbers in 1XX resulted in similar 70-kDa zeta chain-associated protein (ZAP70) activation, while 1XX induced higher Ca2+ elevation and faster extracellular signal-regulated kinase (Erk) activation than WT CAR. Thus, our results confirmed the superiority of 1XX against two targets in different solid tumor models and shed light on the underlying molecular mechanism of CAR signaling, paving the way for the clinical applications of 1XX CARs against solid tumors.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Linfócitos T , Animais , Camundongos , Antígenos CD28/genética , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/antagonistas & inibidores , Receptores de Antígenos Quiméricos/química , Receptores de Antígenos Quiméricos/genética , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/terapia
18.
Pediatr Allergy Immunol ; 33(12): e13886, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36564875

RESUMO

One of the causes of inborn errors of immunity is immune dysregulation. The inability of the immune system to regulate the extent of its activity has several deleterious effects, including autoimmunity, recurrent infections, and malignancy. In recent years, many proteins in the CD28 family - CD28, ICOS, CTLA-4, PD-1, and BTLA - have come into the focus of several research areas for their consequential role in the upregulation or downregulation of the immune response. In this review, we will discuss the structure and function of these proteins, as well as provide an overview of the clinical picture of patients with genetic defects.


Assuntos
Antígenos CD28 , Tolerância Imunológica , Humanos , Antígenos CD28/genética , Antígenos CD28/metabolismo , Autoimunidade
19.
Front Immunol ; 13: 1064339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505428

RESUMO

CD19 chimeric antigen receptor (CAR) T-cells have demonstrated remarkable outcomes in B-cell malignancies. Recently, the novel CD19CAR-T cells incorporated with B-cell costimulatory molecules of CD79A/CD40 demonstrated superior antitumor activity in the B-cell lymphoma model compared with CD28 or 4-1BB. Here, we investigated the intrinsic transcriptional gene underlying the functional advantage of CD19.79A.40z CAR-T cells following CD19 antigen exposure using transcriptome analysis compared to CD28 or 4-1BB. Notably, CD19.79A.40z CAR-T cells up-regulated genes involved in T-cell activation, T-cell proliferation, and NF-κB signaling, whereas down-regulated genes associated with T-cell exhaustion and apoptosis. Interestingly, CD19.79A.40z CAR- and CD19.BBz CAR-T cells were enriched in almost similar pathways. Furthermore, gene set enrichment analysis demonstrated the enrichment of genes, which were previously identified to correlate with T-cell proliferation, interferon signaling pathway, and naïve and memory T-cell signatures, and down-regulated T-cell exhaustion genes in CD79A/CD40, compared with the T-cell costimulatory domain. The CD19.79A.40z CAR-T cells also up-regulated genes related to glycolysis and fatty acid metabolism, which are necessary to drive T-cell proliferation and differentiation compared with conventional CD19CAR-T cells. Our study provides a comprehensive insight into the understanding of gene signatures that potentiates the superior antitumor functions by CD19CAR-T cells incorporated with the CD79A/CD40 costimulatory domain.


Assuntos
Antígenos CD40 , Ativação Linfocitária , Ativação Linfocitária/genética , Proliferação de Células , Antígenos CD28/genética , Antígenos CD19/genética , Proteínas Adaptadoras de Transdução de Sinal
20.
Front Immunol ; 13: 1029214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405686

RESUMO

Despite the availability of an effective prophylactic vaccine, 820,000 people die annually of hepatitis B virus (HBV)-related liver disease according to WHO. Since current antiviral therapies do not provide a curative treatment for the 296 million HBV carriers around the globe, novel strategies to cure HBV are urgently needed. A promising approach is the redirection of T cells towards HBV-infected hepatocytes employing chimeric antigen receptors or T-cell engager antibodies. We recently described the effective redirection of T cells employing a second-generation chimeric antigen receptor directed against the envelope protein of hepatitis B virus on the surface of infected cells (S-CAR) as well as bispecific antibodies that engage CD3 or CD28 on T cells employing the identical HBV envelope protein (HBVenv) binder. In this study, we added a trispecific antibody comprising all three moieties to the tool-box. Cytotoxic and non-cytolytic antiviral activities of these bi- and trispecific T-cell engager antibodies were assessed in co-cultures of human PBMC with HBV-positive hepatoma cells, and compared to that of S-CAR-grafted T cells. Activation of T cells via the S-CAR or by either a combination of the CD3- and CD28-targeting bispecific antibodies or the trispecific antibody allowed for specific elimination of HBV-positive target cells. While S-CAR-grafted effector T cells displayed faster killing kinetics, combinatory treatment with the bispecific antibodies or single treatment with the trispecific antibody was associated with a more pronounced cytokine release. Clearance of viral antigens and elimination of the HBV persistence form, the covalently closed circular (ccc) DNA, through cytolytic as well as cytokine-mediated activity was observed in all three settings with the combination of bispecific antibodies showing the strongest non-cytolytic, cytokine-mediated antiviral effect. Taken together, we demonstrate that bi- and trispecific T-cell engager antibodies can serve as a potent, off-the-shelf alternative to S-CAR-grafted T cells to cure HBV.


Assuntos
Anticorpos Biespecíficos , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Vírus da Hepatite B , Antivirais , Proteínas do Envelope Viral/genética , Linfócitos T , Antígenos CD28/genética , Leucócitos Mononucleares , DNA Circular , Citocinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA